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Thermal Conductivity of Oxygen in the Critical Region 
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The thermal conductivity of oxygen has been measured in a broad region 
around the critical point by means of Rayleigh light scattering. Measurements 
were made on two isochores and on the saturation boundary. The results are 
compared with current methods of predicting the anomalous thermal conductiv- 
ity in the critical region. 
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1. INTRODUCTION 

It has long been recognized that the thermal conductivity of a pure fluid 
undergoes an anomalous increase in the general vicinity of the critical 
point. In the case of oxygen on the critical isochore, this critical enhance- 
ment amounts to about 12% of the total conductivity at a distance of 20 ~ 
above To, and this increases to 90% of the total within a few hundredths of 
a degree above the critical point. This is generally the same region in which 
the compressibility becomes very large, and as a result, thermal conductiv- 
ity measurements by conventional techniques are extremely difficult and 
subject to large errors. We have therefore made use of Rayleigh light 
scattering measurements to study the thermal conductivity of oxygen in the 
critical region. This technique has the advantage that no macroscopic 
gradients are introduced. In addition, the method is ideally suited for work 
in this region where the large thermal fluctuations in density scatter light 
strongly. With the development of the laser and high resolution spectros- 
copy and other signal processing techniques, it is now possible to measure 
the properties of scattered light with remarkable accuracy. 
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Along with the development of the experimental techniques, the phys- 
ics of many-body systems of dense fluids has developed a theoretical 
picture of the situation which is very useful for interpreting the results. In 
fact since, in the critical region, the density fluctuations are large compared 
to the range of intermolecular potentials, the critical enhancement becomes 
virtually independent of the molecular species; in other words, it exhibits 
universal behavior, and the results can be calculated with a minimum of 
data. The theoretical model depends, however, on several approximations 
and assumptions, and it is the purpose of this experimental work to check 
the accuracy of some of these approximations in the case of oxygen. 

2. CORRELATION OF THERMAL CONDUCTIVITY 

Transport coefficients are generally considered as functions of density 
and temperature. Hanley et al. [1] have correlated the existing thermal 
conductivity data for oxygen. They constructed excess functions such that 
the behavior of the thermal conductivity is given by the relation 

;k{O, T) = Xo(T ) + )t'(T)o + ~(p,  T) + Xc(p, T) (1) 

Here X 0 is the dilute gas value, found from kinetic calculations. The 
quantity X' is called the first density correction, and AX is the excess 
conductivity. The last term, X c, is used to describe the critical enhancement. 
For the details concerning the first three terms on the right side of (1), the 
reader may consult ref. [1]. Here they will be represented by one term, XB, 
the background thermal conductivity. It is a slowly varying function of T 
and p in the region of interest. 

The quantity called the critical excess term has been derived theoreti- 
cally by Kadanoff and Swift [2] and by Kawasaki [3]. They were able to 
calculate an expression for the thermal diffusivity in the critical region, 
which is, approximately, 

Xc k~T 
PCee - A 6~rv/~ (2) 

where k 8 is Boltzmann's constant, ~/is the viscosity, and C e is the specific 
heat at constant pressure. The quantity ~ is the correlation length, which 
will be calculated here according to the expression given by Sengers and 
Sengers [4], 

- -  ( 3 )  
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where X~/0 .2 = K~, the isothermal compressibility, and the * superscript 
denotes quantities reduced by the critical parameters; F and ,/ are the 
parameters in the power law expression X~-= F(AT*)-r on the critical 
isochore, and the reduced temperature and density differences are AT* 
= ( T -  Tc)/T ~ and AO*= (O-  Oc)/O~- From (3), we see then that on the 
critical isochore, 

= fo(aT*)-" (4) 

where the exponent u is equal to 0.63. The correlation length amplitude, ~0, 
can be estimated from the method suggested by Basu and Sengers [5]: 

rkBTc )t/3 
to = R ~ (5) 

whe{e R is a universal constant whose value is approximately equal to 0.69. 
The parameter B is taken from the relationship for the densities on the 
coexistence boundary, 

/xOc*x c = __+ BIAT*I (6) 

and the various exponents are related by 

v = (2fi + y) /3  (7) 

Location with respect to the critical point may be designated either by 
the coordinates (AT*, A0* ) or by (r, 0). Here 0 varies from 0 on the critical 
isochore to ___ 1 on the coexistence boundary. In order to calculate the 
correlation length at densities other than the critical density, Sengers and 
Sengers [4] generalized (3) to the form 

= (8) 

where R(0)=  1 and R(+  1)= 1.17, as calculated from the three-dimen- 
sional Ising model and verified experimentally. They suggested that the 
simplest functional form for R(O) should be 

R(O) = 1 + 0.1782 (9) 

The shear viscosity, ~/, also exhibits a weak divergence at the critical 
point. Like the thermal conductivity, it may be considered to consist of a 
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background and a critical part. Hanley et al. [1] have also correlated the 
background viscosity for oxygen. Following Basu and Sengers [6], we will 
express the viscosity as 

71 = ~/s (@)~ for q~/> 1 (lO) 
*/=~/B for q ~ < l  

where TTS is the background viscosity. The exponent ~ is a universal 
parameter with theoretical values spanning the range 0.054 < ~ < 0.065, 
while q depends upon the substance. It has not been determined for 
oxygen, and we will use here the value determined in ref. [6] for nitrogen, 
q--i = 22 • 10 -8 cm. Since it is raised to a very small power, ~, the exact 
value used makes little difference. 

The coefficient A in (2) has been calculated by different authors to 
have values varying between 1.0 and 1.2; see, for example, Burstyn'et al. 
[7]. Measurements on carbon dioxide, steam, and several mixtures have 
indicated values between 1.15 and 1.2. More recently, however, after very 
careful measurements, the authors in Ref. [7] arrived at a value of 1.02 +_ 
0.06. In the comparisons given here, we have used the value 1.2, and any 
conclusions which we can draw from our results will be discussed in a later 
section. 

Calculation of the correlation length requires a knowledge of the 
isothermal compressibility. In addition, derivation of the thermal conduc- 
tivity from the thermal diffusivity requires a value for Cp which also 
depends on the compressibility. We therefore need a representation for the 
PVT surface. For oxygen three possibilities exist: a 32-term extended 
Benedict-Webb-Rubin (BWR) equation [8], a polynomial representation 
[9], and a nonanalytic scaled equation. Of the three, the scaled equation is 
by far the best representation in the critical region, and we have used it in 
its universal form as applied to oxygen. For a complete discussion of this 
equation, see Section 4.3 of reference [4]. The main drawback of this 
equation is its limited range. It is only valid for ]AT*[ < 0,.025, I~0"1 < 0.25. 
Beyond this region near the critical isochore, the polynomial representation 
was used, and on the saturation boundary, the BWR equation was used. 

Sengers [10] has further pointed out that the range of applicability of 
(2) is increased if we substitute the quantity (C e - Cv) in place of Cp. This 
is a small change since Cp >> C v in this region. From the foregoing relations, 
we see that the thermal diffusivity goes to zero at the critical point 
approximately as K r- 1/2. Since (@ - Cv) is proportional to K r to the first 

�9 cc i/2 power, it follows that X c KT~ . The values of the parameters used in the 
preceding equations are summarized for oxygen in Table I. 
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Table I. Summary of Parameters Used for Oxygen in Section 2 

T c = 154.571 K F = 0.0838 
tgc = 13,63 tool �9 liter-i B = 1.827 
Pc = 5.043 MPa p = 0.633 
A= 1.2 y=1.19 
~o = 1.56 • 10 -8 cm /3 = 0.355 
R = 0.69 ~ = 0.057 

q - 1 = 2 2 •  10-8cm 

Relationship between (A T*, Ap*) and (r, 0). 
AT* = r(1 - b202) b 2 = 1.3909 
Ap* = rPkO k = 1.309 

3. L I G H T  S C A T T E R I N G  

Highly monochromat i c  laser light incident on a fluid sample is scat- 
tered by the spatial variation of the dielectric constant,  which in turn is 
caused by spontaneous fluctuations in the density. These fluctuations also 
vary with time, causing the scattered signal to be modula ted  and  thus have 
a f requency distribution. In  the case of a simple fluid, the scattered 
spectrum consists of three Lorentzian shaped lines. The center or  Rayleigh 
line has its max im um  at the laser frequency.  It  is caused by nonpropaga t ing  
density fluctuations which m a y  also be considered as isobaric ent ropy 
fluctuations. The half-width of the Rayleigh line, F R = ()t/oCp)k 2, which is 
the thermal diffusivity multiplied by the square of the scattering vector, k. 
The scattering vector is the difference between the wave vectors of the 
incident and  scattered light, k = k 0 - ks; its magni tude is given by  

Ikl - ~ o  n s in (0 /2)  (11) 

where n is the index of refraction of the fluid, A 0 is the wavelength of the 
incident light in vacuum,  and  8 is the scattering angle. Since the linewidth 
F R is propor t ional  to the thermal conduct ivi ty  X, it may  also be considered 
as consisting of a background  and critical part, 

where 

FR = FB + Fc (12) 

~'B ?~Bk2 ;~ck2 - A k~ Tk 2 
- ocp  ' ( 1 3 )  
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Spontaneous density fluctuations decay according to the laws of hy- 
drodynamics. However, very near the critical point, the correlation range 
becomes very large, and hydrodynamics must be supplanted by a more 
general theory. In short, the spectrum becomes k-dependent and Eq. (13) 
must be modified. We use here the mode-mode coupling theory of Ka- 
wasaki [31. Then Eq. (13) becomes 

~kB k2 
= - = - z - ( '  + + A - -  

v,~p 

k s Tk 2 Ko(k~) 
6r k2~ 2 

(14) 

The first term can generally be calculated from estimations of the back- 
ground thermal conductivity and Cp derived from PVT data. By the time 
k ~ l ,  this term is about a factor of 10 smaller than the second. The 
function K 0 is 

K0(x) = 3 [1 + x 2 + (x 3 -  x -  l)arctan(x)] 

with limx_,oKo(x ) = x 2, and limx>>lKo(X ) = (3 ~r)x 3. Thus we see that in the 
limit k~ >> 1, the thermal diffusivity becomes independent of ( (and there- 
fore AT*) for a finite k. The thermodynamic quantities are given by the 
limiting value at k --- 0 (forward scattering). 

According to Eq. (14), the critical part of the thermal diffusivity 
approaches an approximately constant value (linear in T) far from critical, 
whereas Xc/oC p should go to zero. Therefore Hanley et al. [11] have 
suggested the use of an empirical damping factor, F(zXT*, A0* ). This factor 
has the form 

F(AT*,AO* ) = e x p [ - A  (AT*) 2 -  B(Ao*) 4] (15) 

and they proposed that A and B are universal constants with the values 
A = 18.66 and B = 4.25. 

Using all of the foregoing relationships, both theoretical and empirical, 
the expression for the Rayleigh half-linewidth is 

h~k2( l+k2f2)+A k~Tk2 K~ [ Cv ]F(AT*,Ap*) (16) 
rR -- k2 2 1 - E 

In the critical region, the Rayleigh line is too narrow to be measured 
with the usual types of spectroscopic techniques. It can, however, be 
measured by correlation techniques. The random density fluctuations, 
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AO(t ) = p( t )  - ( p ) ,  are characterized by their time, or autocorrelation func- 
tion, 

(A0(0) 60(0)  = (17) 

which is the Fourier transform of the spectrum. The decay constant % is 
equal to the reciprocal of the halfwidth of the Rayleigh line, F~ ~. 

The density fluctuations cause random fluctuations in the intensity of 
the scattered light. The scattered light is detected by a photomultiplier 
whose output is fed into an autocorrelator, which builds the correlation 
function of the photoelectrons. It thus constructs 

G(2)(~ ") = (n(0)n(~')) = a2(1 + e -2t/~c) (18) 

It allows the direct determination of % = F~ 1. Thus when r R is very small, 
the decay time becomes relatively long, and the signal is easily processed by 
the correlator. 

4. EXPERIMENTAL 

4.1. Apparatus 

This light scattering appartus was originally developed by Ackerson 
and Straty [12]. The layout of the apparatus is shown in Fig. 1. The beam 
from an argon ion laser (I in the figure) is directed with mirrors and 
focused on the center of the sample cell using a long focal length lens. The 
light scattered at a well-defined angle 0 is collimated by the collection 
optics and focused on the cathode of the photomultiplier. The output of the 
photomultiplier is fed into a commercially available digital autocorrelator 
and then into a minicomputer for analysis. If desired, some of the laser 
beam could be split off and remixed with the scattered light for heterodyne 
measurements. The sample cell was mounted in the tail of a cryostat and 
was surrounded by a thin cylindrical copper shield, which was in contact 
with a liquid nitrogen tank. The shield had three slits which allowed limited 
optical access to the cell. The sample cell is a heavy wall copper container 6 
cm long with quartz windows mounted in the ends. Temperature was 
controlled with an ac bridge, utilizing a small inexpensive platinum resis- 
tance thermometer. A nitrogen gas reflux tube connected the cell with the 
refrigerant tank for rapid cooling. It was evacuated for measurements in the 
critical region. Several heaters were wrapped on the cell in a symmetrical 
manner in order to control the temperature while minimizing thermal 
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Fig. 1. Schematic layout of the light scattering apparatus. 

gradients. Absolute temperatures were measured with a 25 ~2, NBS 
calibrated platinum thermometer using a 6-dial potentiometer. Tempera- 
ture control and reproducibility were on the order of 0.5 mK. Laser power 
was varied from 300 mW far from the critical point to a few milliwatts for 
the points nearest critical to prevent temperature gradients and convection. 
The scattering angle was defined by two pinholes and a long focal length 
lens, and a second lens was used to direct the scattered light onto the 
photomultiplier. A small 1 mW alignment laser was used to line up the 
components. The scattered beam path was shielded with several layers of 
black felt, and measurements were made in a darkened room in order to 
minimize stray light. The scattering volume had a diameter of less than 0.3 
mm, and limiting stops in the collection optics eliminated the window flares 
at the ends of the cell. 

All of the components of the system were mounted on a heavy optical 
bench, which was levitated by means of air shocks, which in turn rested on 
several layers of foam padding for the purpose of eliminating extraneous 
noise from building vibrations. The scattering angle was determined from 
careful triangulation on the bench top. Most of the data were taken at 
small angles (8-9 ~ ) to observe decay rates which were not too fast to be 
processed by the autocorrelator. The apparent angle had to be adjusted for 
the difference between the indices of refraction of the fluid oxygen and 
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room air, a correction which amounted to about 18% in k 2. Very close to 
the critical point, the high turbidity and the large density gradient pre- 
vented the passage of the incident beam through the 6 cm length of the cell. 
For measurements in this region, a second laser (II in Fig. 1) was aligned so 
that its incident beam was in the exact opposite direction from that of the 
first laser. The collection optics were focused on a point near the rear 
window of the cell, and measurements were made at the complement of the 
original angle (171-172~ The total uncertainty due to the scattering angles 
is estimated at 1% for the forward scattering and about �89 for the 
backscattering measurements. 

Where possible, the homodyne technique was used because it was 
experimentally easier and the signal to noise ratio was higher. The data 
were analyzed using Eq. (18). Far from critical, however, the scattered 
signal is very weak, and some heterodyning from stray flares and reflections 
in the cell is inevitable, with the result that the correlation function is 
distorted from the simple single exponential. In this region, it was necessary 
to mix the heterodyne beam with the scattered light. In this technique, great 
experimental care must be taken to match the wave fronts so that the two 
beams will mix efficiently. In the intermediate region, data were measured 
using both techniques as a check on the results. The two measurements 
always agreed to within 10%. 

The sample density was determined by means of a small fiat-plate 
capacitor mounted on a flange on the bottom of the cell, eliminating the 
need to measure pressure. The density was calculated via the Clausius- 
Mossotti relationship given in [13] (10 in g .  cm-3), 

e - 1 _ 0.12361 0 + 3.2 x 10-410 2 - 1.21 x 10-310 3 (19) 
c + 2  

The capacitor was located about 3.5 cm below the level of the laser beam. 
Close to the critical point, the compressibility becomes large enough that 
adjustment for the variation of the density with height must be made. On 
the critical isochore within one degree of critical, this correction becomes 
important. The quantity dp/dh = - 0 2  K r was calculated using the univer- 
sal scaled equation of state [4], and the total change in density was found 
by integrating numerically in height steps of 1 mm. In principle, this 
adjustment should be fairly accurate. However, in cases where the result 
could be checked, such as measurements on the saturation boundary, there 
was a discrepancy between the adjusted densities and the saturation densi- 
ties calculated from [9]. The discrepancy could be reduced by assuming the 
existence of a small temperature gradient across the cell, with the top 
(thermometer) side being warmer and the bottom (capacitor) side colder. In 
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practice the calculated saturation densities from [9] were used. On the 
critical isochore, very near To, care was taken to make measurements at 
exactly &. This was accomplished by moving the focusing lens so that the 
incident beam was scanned up and down through the cell. Measurements 
were made at height increments of 1 mm, and the point where the Rayleigh 
linewidths was a minimum was taken as the point of maximum compress- 
ibility and therefore the critical density. 

The autocorrelator forms the correlation function of the density fluctu- 
ations according to Eq. (18). Delay times varied from 125/~s near critical 
down to 2 Vs. These correspond to Rayleigh linewidths varying from 1 kHz 
to 64 kHz. The corresponding sampling times varied from about 1 rain to 
about 30 rain for the weak signals far from critical. In addition to the 24 
data accumulation channels, there were four special channels used to 
determine the background signal necessary to normalize G. (2~ As an 
additional safeguard, the delay time, r, was set so that the 24 channels of 
the correlator spanned six "decades" of the fluctuation decay constant, %. 
Thus in Eq. (18), t = 24"r--6(%/2). Then since ( l /c )  6= 0.0025, the last 
four data channels should give the background to within 0.25%. The two 
methods for calculating the background were compared and generally 
agreed to within 0.3%. This agreement assured us that we were dealing with 
a single exponential decay and also that total uncertainty due to the 
statistical counting process was no greater than about 1%. 

In an earlier work [14], we had determined the critical temperature of 
oxygen t o b e  154.581 K on the T68 temperature scale. However, when 
studying the power law behavior of thermophysical properties, it is gener- 
ally desirable to redetermine the critical temperature in the apparatus in 
which the measurements are made. Small differences in thermometry or 
small thermal gradients in the apparatus are then cancelled out. In this case 
the temperature was varied in very small increments over a period of 
several days, alternately warming and cooling, in an attempt to see the 
meniscus disappear. Due to the turbidity and vanishing surface tension, this 
proved to be a very diffiqult task, with a resulting uncertainty of 0.01-0.02 
K. The problem was solved by placing a low power spotting scope in line 
with the collection optics and observing the laser beam as it passed through 
the sample. The beam height was adjusted to be just above the meniscus 
and the sample was heated slightly above critical. In the single phase region 
the beam is refracted downward by the density gradient. When the sample 
was cooled into the two-phase region, there was an additional reflected 
component of the beam. In this way the temperature of the disappearance 
of the meniscus could be determined with a precision of about 1 inK. With 
this apparatus, the thermometer indicated a critical temperature of 154.571 
K, and all A Ts given here are relative to this value of To. 
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The oxygen samples came from cylinders of ultra high purity gas, with 
a total impurity content of 100 ppm or less. The gas was passed first 
through a trap with a molecular sieve to remove water and then through a 
paper filter with a pore size of 0.025 /~m to remove solid particles, which 
scatter light very strongly. 

4.2. Results 

A total of 46 measurements were made on or near the critical isochore, 
39 by forward scattering and 7 by backscattering. Values of AT ranged 
from 0.014 to 19.354 K. Nineteen measurements were taken on the satu- 
rated vapor and two for the saturated liquid at A T varying from - 0.002 to 
- 1 . 7  K. Eleven measurements were also made on an isochore with a 
density of 15.3 mol .  liter-1. The forward scattering data, using the argon 
ion laser (A 0 = 0.5145/zm), had a value of 2.15 x 10 4 c m  - !  for k, while for 
the backscattering data (A0 = 0.6328/xm) k had a value of 2.15 x 105 cm-] .  
The various data points had slightly differing k values due to small 
adjustments made to the apparatus from time to time. The value of the 
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Fig. 2. Thermal diffusivity results on the critical isochore and one near-critical isochore; O, 
/x, forward scattering; [], backscattering. The curves are from Sengers' calculation using the 
universal scaled equation of state; dashed line, limit of applicability. 
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index of refraction, n, for oxygen at the critical point was taken from [13] to 
be 1.084, and it is constant to within about 2.5% in our experimental range. 
The value of Pc used here was taken from [14] and is 13.63 mol. liter-1. 
The results for the single phase and saturation data are shown in Figs. 2 
and 3, respectively, along with values calculated from Eq. (16). Close to the 
critical point it is seen that the backscattered data deviate from the forward 
scattered data, illustrating the k dependence when k~---I. The numerical 
results are given in Table II. 

5. COMPARISON OF EXPERIMENTAL AND 
CALCULATED RESULTS 

In the region studied here, the critical enhancement term in Eq. (16) 
leads to thermal conductivities which vary in magnitude from a small 
perturbation on the background thermal conductivity to peaks which rise to 
nearly 20 times the value of the background conductivity. The estimated 
uncertainty of the experimental measurements is expected to be 5-10%. 
With these considerations in mind, it is felt that the experimental and 
calculated results are in reasonably good agreement. In Fig. 2 we see that 
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Table II. Thermal Conductivity of Oxygen from Light Scattering Measurements 

Thermal Thermal 
T V conductivity T V conductivity 

(K) (cm3 �9 tool - l )  (exp.) (roW. K - I  - m -1) (K) (era3 �9 tool -1) (exp.)(roW-K - j  .m -1 

154.569 77.07 770.00 
154.550 79.96 282.50 
154.532 81.54 215.20 
154.487 84.27 152.40 
154.439 86.40 125.60 
154.400 87.85 120.60 
154.378 88.59 105.80 
154.351 89.45 113.40 
154.257 92.08 90.60 
154.159 94.45 68.70 
154.121 95.29 87.00 
153.997 97.85 72.30 
153.990 97.99 70.70 
153.782 101.78 56.50 
153.564 105.34 51.70 
153.328 108.88 47.60 
152.850 115.41 40.50 
152.832 115.65 45.70 

154.609 76.18 250.70 
155.163 75.86 104.30 
155.639 75.80 87.50 
155.641 75.74 87.10 
156.632 75.83 71.50 
157.570 75.85 62.70 
158.509 75.79 55.60 
161.837 76.08 48.00 
164.416 75.35 48.20 
164.416 75.35 47.00 
164.416 75.35 44.40 
166.786 76.46 41.50 
168.936 75.72 44.00 
173.925 76.71 41.40 

154.707 75.03 184.20 
154.736 74.80 175.80 
154.761 74.65 167.40 
154.777 74.75 160.10 
154.785 74.66 157.80 
154.635 74.51 261.00 
154.680 74.39 210.90 

154.791 74.39 162.70 
154.831 74.30 156.70 
154.862 74.47 142.60 
155.015 74.23 121.20 
159.573 74.13 54.10 
159.880 74.38 52.50 

155.024 73.91 123.00 
155.261 73.75 110.00 
155.514 73.85 99.00 
155.536 73.69 97.06 
155.759 73.68 89.10 
155.993 73.66 85.50 
156.499 73.64 78.30 
156.990 73.63 73.10 
157.458 73.63 64.30 
159.873 73.63 53.70 
159.868 74.06 52.70 

154.585 73.37 560.00 
154.588 73.37 518.00 
154.589 73.37 523.00 
154.593 73.37 472.00 
154.607 73.37 355.00 
154.618 73.37 317.00 
154.668 73.37 225.00 

154.798 65.46 129.50 
155.036 65.39 111.00 
155.133 65.39 121.30 
155.270 65.36 102.90 
155.504 65.34 95.00 
155.727 65.39 84.40 
155.730 65.35 97.80 
155.742 65.34 92.20 
156.211 65.31 85.10 
158.123 65.38 69.30 
160.483 65.38 55.00 

154.569 70.00 658.00 
154.399 62.88 126.50 
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Fig. 4. Variation of the critical part of the thermal diffusivity on the critical isochore; 
background part also plotted. Solid line, Sengers's model; dashed line, through data. 

on the critical isochore, the agreement is very good close to T c, and that the 
k dependence of the backscatter data is quite well represented. It is 
worthwhile to consider some of the individual parameters in Eq. (16) and 
the effect which their uncertainties would have on the results. 

When the results on the critical isochore were first considered, it was 
found that the good agreement near T~ deteriorated rapidly to about 20% 
disagreement near the limit of usefulness of the scaled equation of state 
(AT = 3.9 K). The nature of this departure is better seen in Fig. 4, where 
the calculated background term has been subtracted from the experimental 
data. In the figure it is seen that although the critical term data follow a 
power law behavior, they do show a systematic departure from the calcu- 
lated line. This power law apparently breaks down, and the deviations 
become large at about AT = 2 K. Also shown is the magnitude of the 
background term, and it can be seen that the agreement becomes poor in 
just the region where this term begins to dominate. From this we conclude 
that there is a systematic error in the background values used in the 
calculations. Modifying the background thermal conductivity by 17-18% 
would allow good agreement between experimental and calculated values 
of Ft. The published background thermal conductivity has a value of about 
44 m W - m  -1 . K  - l  in this region. Of this, the dilute gas term in (1) 
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comprises about 14 mW. m-1.  K-1. It has been calculated by Hanley and 
Ely [15] from theoretical considerations with an estimated uncertainty of 
3%. The remaining 30 roW. m-~ �9 K - l  was correlated by Hanley et al. [t] 
using the data of Ziebland and Burton [16]. This data set consists of 64 
points covering the range 80-200 K, measured with a concentric cylinder 
apparatus. Of these only about one-fourth lie in the temperature range of 
interest here. The correlators have estimated the overall uncertainty of the 
correlated background values to be 4%. This appears to be about the 
standard deviation from the data of [16] and may not make sufficient 
allowance for any systematic errors. No measurements were made near the 
critical density, and thus the correlation is merely an interpolating function 
in this region. New measurements on 2, ~ for oxygen are now underway in 
our laboratory. Meanwhile, for the present purposes we will adjust the 
background values downward by 18%. 

The damping function, F(AT*,Ap*), is completely empirical, and 
although its form is reasonable, our main justification for its use here is the 
fact that it has worked well for a number of other substances. The values 
for the parameters A and B given earlier were used by Hanley et al. [11 to 
represent the data for argon, krypton, xenon, nitrogen, and oxygen. Their 
claim, however, that those values are approximately universal is probably 
not correct. Basu and Sengers [5] have recently fit the best data for CO 2, 
allowing A and B to be adjustable parameters. Their values, A = 39.8, 
B = 5.45 give a somewhat better fit to our data and are therefore used here. 
Obviously there is a certain amount of correlation between the values of F 
and ~t B. Until the latter has been determined more accurately we cannot 
say more about F. 

The other quantities to be examined are all part of the critical 
enchancement term in Eq. (16), and thus their behavior shows up most 
prominently in the data nearest T c. We will consider only the critical 
isochore first. The viscosity has been measured by Haynes [17], with an 
estimated uncertainty of 2%. The critical enhancement, ~l/rlB, was taken 
from [6], where it reproduced high quality data for nitrogen to within __+ 2%. 
The uncertainty in the value of q to be used for oxygen probably does not 
add more than an additional 1% uncertainty. The enhancement has a value 
of 1.03 at AT = 1 K, increasing to 1.25 for the data nearest critical. The 
correlation length t is expected to be represented quite well by Eq. (8). The 
amplitude t0, however, can only be calculated via Eq. (5) with an uncer- 
tainty of about 10%. An independent experimental determination of t0 
would be most useful. The value used for A, 1.2, allows relatively good 
agreement with the data. Any conclusions we may dr=w about its value 
from comparisons with our data, however, must taken into account the fact 
that it depends on the values chosen for t0 and ~/, and it therefore should be 
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Fig. 5. Deviations between data and model: circles, circles with lines, critical isochore; 
triangles, 15.3 mol- liter- l isochore; dashed line, limit of range of scaled equation. 

assigned an uncertainty of _ 10%. Deviations between the calculated and 
experimental thermal conductivity on the critical isochore are shown in Fig. 
5. There we see that on the average, the calculated values seem to be about 
5% higher near T c. Overall, however, the agreement is considered quite 
good. Further from critical, where the polynomial representation of the 
PVT surface is used, the agreement is also relatively good with maximum 
deviations being about 15% at A T = 5 K. 

Away from the critical isochore, the agreement is not so good. This 
situation may be due to the fact that the data appear to be of lower quality 
and, possibly, also to the fact that the PVT surface may be represented less 
accurately by the equation of state. In Fig. 5 the data on the 15.3 
mol. liter-1 (Ap* = 1.12) isochore deviate by up to 20%. Although the data 
scatter rather badly, there does seem to be a discernible systematic trend, 
which suggests that the deviations would become worse as the critical 
temperature is approached. A very similar behavior is seen in Fig. 6, which 
shows the deviations on the saturated vapor and liquid boundary. Here the 
deviations also reach 20%; 27% for one point at T c - T = 0.002 K. Correc- 
tion for the fact that the scaled equation of state does not reproduce well 
the directly measured compressibilities from [14] at the saturation boundary 
improves the agreement somewhat, but a large discrepancy remains. As- 
sumption of a temperature gradient due to local heating by the laser beam 
would also improve the agreement for the saturated vapor data but would 
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not significantly change the disagreement on the 15.3 mol �9 liter-1 isochore. 
Derived results for the thermal conductivity are compared with calculated 
values in Figs. 7 and 8. 

6. SUMMARY 

We have measured the thermal diffusivity of oxygen on the critical 
isochore, one other isochore, and the saturation boundary at temperatures 
varying from 0.002 to 20 K from Tc, by means of Rayleigh light scattering. 
The results were compared with theoretical model calculations based on the 
Stokes-Einstein equation as modified by Kawasaki and implemented by 
Sengers. The agreement is good at the critical density, but there are some 
fairly large, systematic differences at the other densities. Some possible 
explanations are offered for these differences, but it is not possible to 
decide from the present work whether the model is correct for oxygen in 
these regions. By making use of the appropriate equations of state, we have 
derived the thermal conductivity from the data. 
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